Basis Expansion in Natural Actor Critic Methods

نویسندگان

  • Sertan Girgin
  • Philippe Preux
چکیده

In reinforcement learning, the aim of the agent is to find a policy that maximizes its expected return. Policy gradient methods try to accomplish this goal by directly approximating the policy using a parametric function approximator; the expected return of the current policy is estimated and its parameters are updated by steepest ascent in the direction of the gradient of the expected return with respect to the policy parameters. In general, the policy is defined in terms of a set of basis functions that capture important features of the problem. Since the quality of the resulting policies directly depend on the set of basis functions, and defining them gets harder as the complexity of the problem increases, it is important to be able to find them automatically. In this paper, we propose a new approach which uses cascade-correlation learning architecture for automatically constructing a set of basis functions within the context of Natural Actor-Critic (NAC) algorithms. Such basis functions allow more complex policies be represented, and consequently improve the performance of the resulting policies. We also present the effectiveness of the method empirically.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Natural Actor-Critic

This paper investigates a novel model-free reinforcement learning architecture, the Natural Actor-Critic. The actor updates are based on stochastic policy gradients employing Amari’s natural gradient approach, while the critic obtains both the natural policy gradient and additional parameters of a value function simultaneously by linear regression. We show that actor improvements with natural p...

متن کامل

Incremental Natural Actor-Critic Algorithms

We present four new reinforcement learning algorithms based on actor-critic and natural-gradient ideas, and provide their convergence proofs. Actor-critic reinforcement learning methods are online approximations to policy iteration in which the value-function parameters are estimated using temporal difference learning and the policy parameters are updated by stochastic gradient descent. Methods...

متن کامل

Natural actor-critic algorithms

We present four new reinforcement learning algorithms based on actor–critic, natural-gradient and function-approximation ideas, and we provide their convergence proofs. Actor–critic reinforcement learning methods are online approximations to policy iteration in which the value-function parameters are estimated using temporal difference learning and the policy parameters are updated by stochasti...

متن کامل

Applying the Episodic Natural Actor-Critic Architecture to Motor Primitive Learning

In this paper, we investigate motor primitive learning with the Natural Actor-Critic approach. The Natural Actor-Critic consists out of actor updates which are achieved using natural stochastic policy gradients while the critic obtains the natural policy gradient by linear regression. We show that this architecture can be used to learn the “building blocks of movement generation”, called motor ...

متن کامل

An RLS-Based Natural Actor-Critic Algorithm for Locomotion of a Two-Linked Robot Arm

Recently, actor-critic methods have drawn much interests in the area of reinforcement learning, and several algorithms have been studied along the line of the actor-critic strategy. This paper studies an actor-critic type algorithm utilizing the RLS(recursive least-squares) method, which is one of the most efficient techniques for adaptive signal processing, together with natural policy gradien...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008